Sleep II: Glucose Intolerance and Hormone Dysfunction

Featured

My introduction to insulin will be important to understand before getting into today’s conversation. We will be discussing sleep, its affect on blood sugar levels, and its affect on serum insulin levels. If you don’t want to spend the five minutes reading the post on insulin, the most important takeaway is that insulin in a ginormous growth signal to the body. When insulin is present in the bloodstream, our ability to break down and burn stored body fat is blocked, while our ability to form and store new fat molecules is amplified. With that brief introduction, let’s dive in.

I don’t think anyone would argue that humans are incredibly diverse and adaptable. We live and learn to thrive in every environment the world has to offer (mostly). Adaptability is no more than responding positively to your environment. It is making subtle changes in your functioning to better facilitate your existence in that environment in the future. A prerequisite to being adaptable is the ability to sense your environment. Before you can begin to optimize outputs, you have to understand the inputs to the system. Sleep is a primary, pivotal, essential, etc., etc., input to our body functioning. The duration and quality of our sleep each night sends a truckload of data to our body. And being the adaptable creatures we are, our system processes that data and makes compensatory psychologic and physiologic changes. One of the huge levers our body can manipulate in response to this input of data is hormonal and metabolic functioning. If you remember from Sleep I, short sleep induces higher levels of ghrelin (a hormone associated with hunger) and lower levels of leptin (a hormone associated with satiety). These changes in chemical concentration lead to an overall subjective feeling of increased hunger. Today’s topic fits right along side this increased sensation of hunger. When we do not get adequate sleep we become less glucose tolerant. Meaning our blood sugar stays elevated for a longer time after eating, as do our levels of insulin. Short sleep leads to more insulin spending more time in our bloodstream.

In this small study participants were put through two different sleep regiments. Initially they were restricted to four hours in bed per night for six nights, and then allowed 12 hours in the bed for the next seven nights. In each condition they they were subject to a glucose tolerance test while also having their insulin levels measured. During the sleep restricted condition, there was a clear impairment of carbohydrate tolerance. Injected glucose was cleared from the body 40% slower after sleep restriction. They also measured the acute insulin response to be 30% lower in the sleep-debt condition. Glucose effectiveness, a measure of ability to dispose of glucose independent of insulin, was also 30% lower in the sleep debt condition. The combination of these outcomes would certainly lead to prolonged blood sugar elevation, and these differences in glucose tolerance are very similar to those seen in a non-insulin-dependent diabetic male compared to a normoglycemic male. Lastly, the researchers also measured glucose levels and insulin response to a 60% carbohydrate meal; opposed to the IV glucose injection which the above results were in reference to. They measured the increase in peak glucose after eating breakfast was higher in the sleep restricted state. However, peak glucose measurements following lunch and dinner did not differ much between the sleep states [1]. This is certainly no evidence of causation, I simply want to point out that there seems to be some level of hormonal and metabolic dysfunction in response to sleep restriction.

In this study researchers were investigating if sleep restriction impairs insulin signaling. In order for insulin to exert its effect at a cellular level, it first binds to a receptor on the outer membrane of a cell. This binding initiates a cascade of events (molecules tagging other molecules, turning them on) eventually resulting in the body’s ability to move glucose from the bloodstream into the cell. The researchers were able to measure a specific molecule in the insulin pathway (phosphorylated Protein Kinase B, aka pAkt) in order to assess insulin sensitivity of individuals in a sleep deprived state and in a well-slept state. They measured the concentration of insulin that was required to stimulate pAkt to adequate levels. In an insulin insensitive state, the amount of insulin required to reach this level of pAkt stimulation would be higher. In this experiment the participants were subjected to four and a half hours in bed to achieve the sleep deprived state versus eight and a half hours in bed to create the well-slept state (four consecutive days in each state). In the sleep deprived condition the amount of insulin required to elicit the desired pAkt response was 3-fold higher [2]. Another significant manifestation of hormonal disruption after short sleep.

There are many more studies out there, but I like to keep these posts relatively short. It is fairly obvious that there is some level of hormonal dysfunction that occurs after less than a week’s worth of inadequate sleep. Admittedly these studies are small, but we have seen some level of evidence for disruptions to ghrelin, leptin, insulin, and glucose tolerance. So for a quick summary of what we have covered so far: short sleep causes you to feel more hungry and less satisfied after a meal. You then have a decreased ability to deliver glucose from your bloodstream into your cells, elevating your blood sugar for a longer period of time. You also have a decreased response to insulin, further inhibiting your ability to remove glucose from the bloodstream and increasing the overall amount of insulin in your body throughout the day. There is certainly some level of a runaway feedback loop here, as prolonged blood sugar elevation further increases the demand for more insulin secretion. And remember, when you have high levels of insulin circulating, you cannot break down fat, but you can certainly build it.

My concern is not with the 40% slower glucose clearance the day after cramming for an exam or finishing a big project. I am concerned with what happens after 25 years of consistently getting 4-6 hours of sleep. What happens when endocrine dysfunction becomes our normal? What happens when our body is forced to adapt to metabolic conditions it would have only seen in the most stressful times in pre-historic life? Of course we will never know a definitive answer to these questions, but when you are dealing with something as ubiquitous as chronic disease, I naturally look at things equally ubiquitous, i.e. sleep, as possible culprits. The idealized, “I can sleep when I die,” needs to go, or those who believe it will surely meet that end sooner than they should have.

Best explorations

-Ryan; 6/5/2020

See Sleep I: An Evolutionary Imperative

References:

[1] Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435‐1439. doi:10.1016/S0140-6736(99)01376-8

[2] Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann Intern Med. 2012;157(8):549‐557. doi:10.7326/0003-4819-157-8-201210160-00005

Growth of the Human: How Insulin Works

Featured

tldr:

  • insulin is a hormone secreted to lower blood sugar levels
  • insulin is a body wide signal for growth
  • high levels of insulin promote the storage of energy in the form of glycogen and triglycerides (fat)
  • high levels of insulin BLOCK the breakdown of fat
  • insulin is affected by type of food, timing of food, exercise, sleep, and many other lifestyle factors

Insulin is one of the most important molecules in our body. Remember that hormones are molecules secreted by one part of the body in order to communicate a message to another part. They are able to relay information through the bloodstream, allowing systemic responses to certain environmental conditions. Blood sugar is one of the most tightly regulated parameters in our body, as we run into serious problems with both high and low blood sugar levels. Insulin is a hormone secreted by the pancreas when elevated blood sugar has been sensed. Although insulin is one of our body’s primary tools to keep our blood glucose (sugar) in check, it is not a master tool. Insulin only acts to lower blood sugar levels. Typically in response to eating, our blood sugar levels rise. This is when insulin is excreted from the pancreas into the bloodstream. Once insulin is flying around our blood vessels, it starts screaming its message to all the cells it comes into contact with, and its primary message is: Energy is available! GROW, STORE ENERGY, and GROW MORE!

Throughout all levels of biology, a primary task of the organism is to sense energy availability. In the evolutionary world, energy was always hard to come by, so the ability to detect available energy was a crucial advantage that essentially all organisms developed. It would be a catastrophic failure for an organism to try to grow and divide while resources were scarce, and it would be an equally fatal mistake for the organism to fail to grow and store energy when the resources were available. As it turns out, the molecular switches that control this decision of anabolism (building) versus catabolism (breaking down) are often central to our health and longevity. There are a handful of these high level decision makers in our body, but today’s post will focus solely on insulin.

First we must keep in mind the big picture: when insulin is in the blood, it is a body wide signal for anabolism or growth. From here we can zoom in on some of the details of insulin’s action. As we mentioned above, a primary task of insulin is to lower blood glucose levels. When insulin comes into contact with muscle cells and fat cells, it induces a specific effect, essentially unlocking the cell for glucose entry. When a muscle or fat cell grabs (binds) a molecule of insulin from the bloodstream, a cascade of events is set off inside the cell. The end result of this process is the the insertion of the GLUT4 transporter into the cellular membrane of a muscle or fat cell. A quick digression on cellular membranes; these are structures that form the boundary of cells and organelles (smaller structures inside of cells). The membrane is the outer layer controlling what comes in and what goes out. If the bloodstream is a superhighway connecting the different parts of our body, the membranes completely control who is allowed to exit the highway and enter the city (cells). Back to insulin. So insulin binds to the fat or muscle cell, resulting in GLUT4 transporters being shoved into the cellular membrane. The GLUT4 transporter essentially acts like a very specific claw, searching the bloodstream for molecules of glucose, grabbing the glucose from the bloodstream, and transporting it inside the cell. Without GLUT4 transporters in the membrane, glucose cannot enter the cell, and it simply remains in the blood. This is a primary action of insulin. Recruit GLUT4 transporters to the surface of fat and muscle cells, allowing glucose to enter the cell and reduce the amount of glucose in the blood.

This is only the beginning of the effect of insulin. We have brought glucose, single molecules of sugar, into the cell. However, this is about creating stable, usable forms of energy, so getting energy into the cell is just the first step. The cell still needs to convert these singular sugar molecules into a form of energy that can be stored long term. As we already stated, there is a deep, hardwired desire for the organism to capitalize on available energy and prepare for a day when that energy is not accessible. We convert glucose into two energy forms that are better suited for storage: glycogen and triglycerides. Glycogen is essentially a bunch of individual glucose molecules strung together, creating a single, larger molecule. This certainly helps for storage, but it also retains functionality as glycogen can be broken down into usable forms of individual glucose molecules quickly. The primary issue with glycogen is that we run out of space. Each cell can only hold so much glycogen, and when the reserves are filled up, the remainder of the glucose is used to create triglycerides. Triglycerides are the body’s best and most efficient way to store large amounts of energy. These molecules are compact, energy dense, while also retaining the ability to be broken down into usable forms of energy. Triglycerides are colloquially referred to as fat, and most of us can see the abundant stores of energy we carry around our waist.

This system of energy acquisition and storage at the cellular level is quite impressive and sophisticated. It truly highlights the body’s ability to adapt and respond to dynamic environmental conditions. But the world we live in today is much different than the world in which these systems were developed. With our basic understanding of how insulin works to pull glucose into the cell and create stable forms of energy, we will now turn to how this might be problematic in our modern life. Just as we have systems to build and store energy, we of course have systems to break down those stored forms of energy. We have processes that break down glycogen and triglycerides into molecules that can fuel our energy demanding cellular processes. However, because we have these opposing processes (anabolism versus catabolism, or storing energy versus using energy) our body has to know which protocol to run. If we are manufacturing triglycerides to store energy, it would be counterproductive if the cell next door was breaking down its triglycerides to use for energy. Once again, this is a situation our body has developed protection against. Remember what insulin’s primary message is: energy is available, grow and store energy. So not only does insulin provide a pathway for energy into the cell (GLUT4 transporter), it blocks and amplifies certain other processes inside the cell. We have discussed how insulin stimulates the building of fatty acids (energy storage in the form of fats), but the presence of insulin also blocks the cell’s ability to break down fat stores, aka insulin blocks lipolysis. This of course is the outcome of a highly intelligent system, but it certainly promotes issues for our modern lifestyle. WHEN INSULIN CONCENTRATION IS HIGH, YOU CANNOT BREAK DOWN FAT STORES. A similar process is at play with glycogen. When insulin concentration is high, the breakdown of glycogen is blocked, and the formation of glycogen is amplified. This all fits under our big picture of insulin. Insulin is a body wide signal for growth, and in turn, a body wide signal to suppress utilization of previously stored forms of energy.

Even with this basic understanding of insulin, it should be obvious that insulin levels are vitally important for anyone concerned with losing weight. As the weight we should want to lose is in the the form of triglycerides, and those triglycerides cannot be burned in the presence of high levels of insulin. I realize there is not much practical information here, or tips on how to actually utilize this information in our daily lives, but understanding this background biochemistry is fundamental to a sophisticated approach to weight loss and health in general. On this landscape we can explore how certain foods effect insulin levels, the fact that calories are NOT created equal, how movement can be leveraged to help with blood sugar control, how the timing of a meal directly affects its metabolic outcomes, how sleep is intimately connected to insulin sensitivity and glucose tolerance, and many other processes. There are so many pathways that all hinge on the metabolic control switch of insulin. Stay tuned for ideas on how to structure our lives in accordance with the biochemistry that governs our cellular processes.

Best explorations

-Ryan; 6/2/2020

Sleep I: An Evolutionary Imperative

Featured

I think sleep is a crucial part of maintaining health. It is an insurance policy that is too good not to participate in. This will be the first in a series of articles discussing sleep and its importance to our overall well-being. Some of this can be considered anthropomorphizing and certainly hypothesizing, but we learn through stories. So if you would indulge for a story about sleep….

Travel back to our days as hunter gatherers. The rhythms of our day completely controlled by the light and dark cycles orchestrated by our rotation about the sun. As the sun slides down the horizon, it becomes much harder to find food. And in this ancient world of incredible competition for calories, our energy would almost always be best used in search of food. Therefore, when our ability to find food is limited, it would be beneficial to conserve our energy until we are in a situation that can leverage our unique tools developed for calorie acquisition, i.e. day time vision. From this very basic pattern of light and dark, along with a perspective of calorie conservation, we might develop two different modes of being, one of activity, and one of rest and repair.

That being said, sleep’s ability to withstand natural selection is nothing short of a miracle. Sleep is seemingly juxtaposed to many of the behaviors we know to facilitate the passing of our genes into future generations. When we sleep, we are not looking for food, we are not eating food, we are not having sex, we are not looking for a mate, and we are incredibly vulnerable. These are not trivial facts, they are pillars of what we know to be necessary for procreation. So how does something that fails to directly help us in these pursuits, while also making us the most vulnerable of prey, become so prominent in essentially every animal species on this planet? Ockham’s Razor would simply tell us that the benefit must outweigh the harm. Over the long experimental testing grounds of time, mother nature has weighed and measured sleep, and it has proven to be of essential utility. Sleep’s persistence proves its profits exceed its costs. By understanding the magnitude of what we give up through sleep (eating, sexing, security, etc.), we may begin to understand the value we receive through sleep. It simply has to be greater than or equal in value or sleep would not have proliferated.

We don’t know what all the benefits of sleep, and I’m not convinced we ever will. The system-wide effects of something like sleep are hard to tease apart in the discretizing manner demanded by modern science. However, it is being researched more and more and we will be able to increasingly understand the pieces of its puzzle. Our body is able to synchronize different processes through oscillating hormone levels. Throughout the day hormone concentrations rise and fall, creating a rhythmic balance for our cellular operations. There are numerous hormones, and they all have different effects. For example, melatonin ideally starts to increase in the evening, peaks in the middle of the night, and remains low throughout the day. The cyclic variation of hormones act as a internal clock, sending information throughout the body and allowing for different parts of the body to work towards common goals.

Two specific hormones I would like to discuss here are leptin and ghrelin. When discussing biochemistry, we will have to settle with some simplification. Keep in mind when people say something like “melatonin is the sleep hormone,” there is probably a good amount of truth to it, but there is also a vast complexity going on in the background. So while melatonin is certainly involved in sleep/wake cycles, its role is much more complex.

Leptin is a hormone primarily made by adipocytes (fat cells) and enterocytes (small intestine) that signal satiety. It is a huge part of that “full” feeling we get after eating a meal. Ghrelin is a hormone produced by your gastrointestinal system, closely correlated with our sensation of hunger. These two hormones have opposing effects, and are largely involved in appetite regulation. For example, ghrelin is often at its highest concentration before a meal and at its lowest levels after eating. The opposite is true for leptin, as its concentration is highest after eating.

Let’s look at how these hormones are affected by sleep. One of the most common ways to study something is to remove it, and then observe or measure the effect of its absence. Many studies have shown that when we are sleep deprived, the circulating levels of these hormones are changed. One study took a small group of participants and took them through two different scenarios. In the first part of the experiment the participants underwent two days of sleep restriction, then had blood levels of ghrelin and leptin measured, along with a subjective assessment of hunger. These same participants where then later allowed two days of extended sleep, and the same measurements where recorded. The study showed that after sleep deprivation, levels of ghrelin increased, levels of leptin decreased, and subjective hunger was increased [1]. Another study looked at a much larger cohort of patients over a longer period of time. Here they showed that short sleep duration was associated with higher levels of ghrelin and lower levels of leptin, independent of BMI, age, sex, and other confounding factors [2]. In this review article, researchers looked at the body of evidence regarding sleep loss and its effect on neuroendocrine and metabolic function, concluding short sleep is associated with an up-regulation of appetite, lower leptin levels, and higher ghrelin levels [3]. There are numerous other studies out there, and there seems to be a strong general consensus that shortened sleep is associated with lower leptin, higher ghrelin, and increased feelings of hunger. Obviously this is a bad combination for anyone who is concerned about their weight, and an extremely difficult situation to overcome if one is trying to lose weight.

Allow me to step back from the science, and return to our hunter gatherer ancestors to try and tell a story. I do not think it is a huge leap to assume that sleep was something we engaged in every night, and something we rarely sacrificed. If not for any other reason than our gift of vision was severely limited without the light of day. However, I can imagine at least one scenario when we would sacrifice sleep. Those nights when we were on the verge of starvation, when we had gone many days without food. At that point we had no other option but to continue moving in search of food, or at least significantly shorten the time we spent asleep. So if we were on the search for food, bargaining sleep for more exploration time, how might our bodies help us? We would be at a huge advantage if our appetite was tuned for high caloric intake. That way if we managed to finally come across food, we could fully take advantage of the available calories. We would not want to be forced to stop eating because we felt “full.” In this situation it would be a great development if in response to short sleep, our body increased its signal for hunger, and decreased its signal of satiety. Increased ghrelin and decreased leptin, in order to increase our appetite and ability to intake large amounts of calories. Shortened sleep would increase the instinctual drive to find calorically dense food.

Of course this is not science, the evolutionary story may or may not be true. However, viewing things through and evolutionary lens allows us to expand our thinking to why things might work as they do, and I certainly remember things better in story than factual bullet points. So take the evolutionary part with a grain of salt, but the elevation of ghrelin, reduction in leptin and overall increase in hunger in response to short sleep is well understood. If you or anyone you know is struggling with their weight, sleep is an essential first pillar to attack. Leptin and ghrelin are only part of this story. Short sleep also impairs glucose tolerance and causes other hormonal imbalances. Diet and exercise are what people often jump to when discussing weight control, but I would argue sleep should be the first stepping stone. Without prioritizing sleep you will be fighting an uphill battle. Stay tuned for further exploration of sleep’s wide ranging effects on our health.

Best explorations

References:

[1] Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141(11):846‐850. doi:10.7326/0003-4819-141-11-200412070-00008

[2] Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004;1(3):e62. doi:10.1371/journal.pmed.0010062

[3] Van Cauter E, Holmback U, Knutson K, et al. Impact of sleep and sleep loss on neuroendocrine and metabolic function. Horm Res. 2007;67 Suppl 1:2‐9. doi:10.1159/000097543

-Ryan; 6/1/2020

Health and Compound Interest: A Mental Model for Building a Lifestyle

Featured

Compound interest is the addition of interest to a principal sum. It is interest on interest. It is a principle that allows something to increase at faster and faster rates over time. For those visually inclined it is something like this…

https://www.fool.com/knowledge-center/compound-interest.aspx

Economics lesson over. We will apply the idea of compound interest to our approach to health.

This can take many forms. It can be purely psychological, as in a single good decision today makes me more likely to make a good decision tomorrow, and maybe even two good decisions the following day. Another way to describe this is something like the feeling of momentum. *Before we go any further, we will clarify this vaguery, ‘good decision,’ as anything objectively benefiting your health, ie. eating a serving of broccoli, walking outside for 10 minutes, doing a push-up, etc. This would be specific to you and these are general examples.* The compounding principle can also operate in a purely physiologic realm. If I do a set of push ups today, maybe I am able to build some small amount of muscle. If I build muscle, my body’s ability to dispose glucose is improved. If I can dispose of more glucose, my blood sugar goes down. That muscle it not likely to disappear any time soon, therefore I am better at disposing glucose everyday in the future. My average blood sugar over time (HA1c) goes down.

But here is where it gets fun. That same muscle (built from my push-up) that helps me regulate blood sugar helps me move more functionally, increasing my ability to meet the physical demands of life. It increases my resting metabolic rate, allowing my body to “burn” more calories throughout the day. It will help regulate certain hormones circulating in my body. Hell, doing the push-ups might just make me feel better afterwards. The single ‘good’ decision of doing push-ups generates health benefits in multiple dimensions. And the principle of compounding applies in every dimension! The general idea of health compounding is that no matter how insignificant a single ‘good’ decision today may seem, the majority of its benefit exists in your future. So cherish each and every positive decision you make, you just sacrificed a small amount today for a potential windfall tomorrow.

My favorite example of health investment and compound interest is sleep. I have learned to love sleep. We can view investment in our health through the lens of time. How many hours of the day am I doing something productive for my health versus how many hours I am doing something neutral or even negative? I will be the first to admit how difficult it is to make health conscious decisions in today’s environment. We have endless entertainment streaming right to our favorite device, delicious foods that someone would happily deliver to our very own door, not to mention all the gyms are closed! Needless to say, decisions in the best interest of our health are difficult to make. This is what makes sleep the king (or queen) of health decisions. If you prioritize giving yourself 8 hours in bed each night, you just banked 8 hours of good health decisions! You just optimized one-third of your day. Thankfully our unconscious state during sleep makes it rather difficult to be tempted by those beautiful desserts or “Click to play the next episode.” So from the abstracted point of view of wanting to make more ‘good’ decisions than ‘bad’ decisions throughout our 24 hour period, prioritization of sleep is paramount. In a more concrete view, sleep provides numerous physiologic benefits. Chronic short sleep can promote weight gain, hinder weight loss, dysregulate blood sugar levels, cause hormone imbalances (including those that regulate appetite), to only mention a few manifestations. If you are interested in the science of sleep and its physiologic outcomes, stay tuned.

I don’t want to dive too deep into the science right now as this post is more about the conceptual framework we need to adopt towards our health. Every single decision we make is a node in a network. The output from that decision node affects many other aspects of our life, it compounds. My sleep affects my energy, my energy affects my workout, my workout affects my sleep. My food affects my hormones, my hormones affect my appetite, my appetite affects my food choices. My movement affects my hormones, my hormones affect my energy levels, my energy levels affect my desire to move! Our body is a symphony. Every individual piece playing some minor role in the overall function. Don’t downplay a ‘good’ decision, regardless of how insignificant it may seem. Celebrate eating a serving of vegetables, acknowledge the victory of going for a walk, and throw a party for yourself tomorrow if you give yourself 8 hours in bed.

Best explorations

-Ryan; 4/30/2020

Featured

Health Unrefined Part One: Medical Problems of the 21st Century

Pause and think about what diseases concern you you today. What diseases do you see or hear about frequently? Which conditions affect someone close to you? Those that populate my mind are cancer, heart disease, obesity, diabetes, depression, and dementia, among others. There is something that connects these seemingly disparate diseases, they are all chronic diseases. A chronic condition can be defined as a physical or mental health condition that lasts more than one year, causes functional restrictions, and requires ongoing  monitoring or treatment [1]. Let’s break down this definition.

Chronic disease can be physical or mental. We interpret the world through differentiation. We like to have clear cut distinctions, labels, and discrete entities which have specific meaning. The disease process, of course, exists in the natural world, outside of our psyche and outside of our distinctions. In the natural world these clear boundaries we perceive are not so well defined, as things exist on a continuum or gradient. I make this point to emphasize that although we separate physical and mental diseases, they are not exclusive to one another. From the perspective of the disease, there is no distinction between the mind and the body. This means that even though we may consider depression to be a “mental” condition, there are very real physical effects of depression. Just as there are very real psychological effects of cancer. Disease is not limited to the artificial boundaries we use to perceive the world. 

A chronic condition lasts more than one year and requires ongoing monitoring or treatment. There is a lot to unpack here. Many of us may believe that modern medicine has a drug or procedure to fix the majority our ailments. The so called silver bullet. However, if a disease is still lingering after a year, then clearly there has been no drug, no treatment, and no procedure that has done anything to remove or reverse the disease. We certainly have many tools to suppress symptoms that arise from the disease, but the root, the disease state itself, remains relatively untouched. And when the disease remains untouched, you get exactly what the definition tells us, ongoing monitoring and treatment. Ongoing monitoring and treatment is a euphemism for lifelong prescription medications (often with side effects that instigate the need for additional medication), frequent visits to the doctor, numerous referrals to specialists, occasional trips to the emergency room – all while the actual disease remains largely unchanged beneath its cloak of symptoms. And lastly, we get to the real kicker with chronic disease, chronic disease causes functional restriction. So not only do you get to deal with the disease for an extended length of time, but the life that you are able to live is no longer the life you have lived. There is the obvious loss of time and money associated with the ongoing monitoring and treatment, but the real problem is the decrease in quality of life. Dependencies are limitations. Chronic disease erodes the body’s ability to thrive, reduces its capacity to function, and forces dependencies on medical interventions that seem to only be bailing water from a boat riddled with holes. 

Modern medicine has saved countless lives, and it will save and improve the lives of many more. However, I think it is largely missing the mark when it comes to the prevention and treatment of chronic disease. The numbers almost seem fake. 45% (and growing) of Americans have at least one chronic disease. 25% have multiple chronic diseases. Chronic disease is responsible for 7 out of 10 deaths in the United States. 96% of all Medicare spending goes towards the treatment of chronic disease and 83% of Medicaid spending [1]. And these are just a few of the statistics. Chronic disease is clearly demanding a different approach. *Side note, you may not use Medicare or Medicaid, but if you think you are not paying for these expenses, you would be dead wrong.*

I will be starting medical school in less than four months. There are daunting challenges ahead for the healthcare industry, but this is exactly why I made a life altering career change at the age of 24 after being an established engineer. There are big problems with an institution we all trust and depend on. We need big ideas and big solutions. Chronic disease is the downstream effect of the way we live our lives. Every individual has to take the responsibility on themselves. If we fail to give proper importance to sleep, food, movement, and our mental or emotional state, we are selecting for chronic disease. Medications are often much too late of an intervention when it comes to these diseases. It starts today, and health is a conscious decision we all have to make day in and day out.

This is a fairly dramatic change from all my previous posts, however I would certainly say it is all connected. If you have read any previous posts, you are likely aware of my fascination with the mind. At the end of the day, the mind is where our health crisis lives. The vast majority of the time it is not a lack of knowledge that prevents us from being healthy. We all know we should eat better, exercise more, manage our stress, etc. The problem exists in our inability to consistently implement behaviors that promote health. So if this interests you, we will certainly be exploring ways to build a health promoting life. If not, well, the esoteric posts about consciousness, infinite dimensions, and God are not going anywhere.

Best explorations

-Ryan; 4/25/2020

Sources:

  1. Raghupathi W, Raghupathi V. An Empirical Study of Chronic Diseases in the United States: A Visual Analytics Approach. Int J Environ Res Public Health. 2018;15(3):431. Published 2018 Mar 1. doi:10.3390/ijerph15030431